Speed Control of Synchronous Machine by Changing Duty Cycle of DC/DC Buck Converter

Rashid Al Badwawi
University of Exeter

The work is financially supported by the Government of Oman and EPSRC-DST funded RESCUES project (EP/K03619X/1)
Contents

• Objectives

• What is DC/DC buck converter?

• Hybrid system with DC microgrid

• Wind energy system

• Wind turbine modelling

• Speed control of wind turbine

• Simulation results

• Conclusion

• Q & A
Objectives

• Develop wind system model.

• Measure wind speed.

• Develop two models to control turbine speed.

• Use measured wind speed as input for wind turbine.

• Use duty ratio of DC/DC buck converter to control speed of wind system.
What is DC/DC buck converter?
Hybrid System with DC Microgrid
Wind energy system
Wind Turbine Modelling

• Power generated P_m by wind turbine:

$$P_m = \frac{1}{2} \rho \pi R^2 u^3 C_P$$

P_m : Turbine mechanical power
ρ : Air density
R : Turbine rotor radius
u : Wind speed
C_P : Turbine performance coefficient (function of tip speed ratio λ and pitch angle β in a pitch controlled system)

$$\lambda = \frac{R\omega}{u}$$

ω is turbine rotational speed

$$\omega = \frac{1}{J} \int (T_m - T_e) \, dt$$

T_m : Turbine mechanical torque
T_e : Turbine electrical torque
J : Rotational inertia
Wind Turbine Modelling

- **Mechanical torque** T_m can be calculated:

 $$ T_m = \frac{P_m}{\omega} $$

 P_m: Turbine mechanical power
 ω: Turbine rotational speed

- **Electrical torque** T_e can be calculated:

 $$ T_e = K_I I_s $$

 K_I: Machine torque constant
 I_s: Machine stator current

In this system, electrical torque is controlled by buck output current I_L.
Electrical torque can be related to buck current by new defined constant K_T

 $$ T_e = K_T I_L $$
Speed Control of Wind Turbine

a) Stored Power curve

\[P_m = \frac{1}{2} \rho \pi R^2 \omega^3 \lambda^{0.5} \]

\[T_m = \frac{1}{sJ} u^3 \]

b) PI Control of the TSR
Speed Control of Wind Turbine

![Graph 1: Tip Speed Ratio (λ) vs. Efficiency (η)]

![Graph 2: Turbine Speed (RPM) vs. Power (W)]

![Graph 3: Wind speed (m/s) vs. Time (s)]
Simulation Results

a) Stored Power curve

- Generated electrical energy = 28.81 kJ

b) PI Control of the TSR

- Generated electrical energy = 24.75 kJ
Simulation Results

PI Control of the TSR

Generated electrical energy = 30.39 kJ
Detailed Overall System of Wind Turbine
Simulation Results

Power & speed for detailed model with machine torque constant equal to 5.308 N.m / A_{peak}

Generated electrical energy = 32.05 kJ
Conclusion

- A wind turbine connected to a PMSM was modelled in Simulink.
- DC/DC buck converter was used at the load side.
- A comparison between two methods of controlling a wind turbine in a microgrid was done:
 1. Stored power curve
 2. PI control of the speed tip ratio
- PI method provides more controllability, but it requires an anemometer to measure wind speed.
- Stored energy method is easier to implement, but amount of energy extracted can be less.
Thanks for Your Kind Attention

Rashid Al Badwawi
rsm202@exeter.ac.uk